Binomial Theorem

• The coefficients of the expansions of a binomial are arranged in an array. This array is called Pascal's triangle. It can be written as

Index	Coefficient(s)
0	°C0
	(= 1)
1	¹ C ₀ ¹ C ₁
	(=1) $(=1)$
2	$^{2}C_{0}$ $^{2}C_{1}$ $^{2}C_{2}$
	(=1) $(=2)$ $(=1)$
3	³ C ₀ ³ C ₁ ³ C ₂ ³ C ₃
	(=1) $(=3)$ $(=3)$ $(=1)$
4	${}^{4}C_{0}$ ${}^{4}C_{1}$ ${}^{4}C_{2}$ ${}^{4}C_{3}$ ${}^{4}C_{4}$
	(=1) $(=4)$ $(=6)$ $(=4)$ $(=1)$
5	

• **General Term:** The (r + 1)th term (denoted by T_{r+1}) is known as the general term of the expansion $(a + b)^n$ and it is given by $T_{r+1} = {}^nC_r a^{n-r} b^r$

Example 1: In the expansion of $(5x - 7y)^9$, find the general term?

Solution: $T_{r+1} = {}^{9}C_{r} (5x)^{9-r} (-7y)^{r} = (-1)^{r} {}^{9}C_{r} (5x)^{9-r} (7y)^{r}$

- Middle term in the expansion of $(a + b)^n$:
- If *n* is even, then the number of terms in the expansion will be n + 1. Since *n* is even, n + 1 is odd. Therefore, the middle term is $(\frac{n}{2} + 1)^{\text{th}}$ term.
- If *n* is odd, then n + 1 is even. So, there will be two middle terms in the expansion. They $\operatorname{are}\left(\frac{n+1}{2}\right)^{\operatorname{th}}$ term $\operatorname{and}\left(\frac{n+1}{2}+1\right)^{\operatorname{th}}$ term.
- In the expansion of $\left(x + \frac{1}{x}\right)^{2n}$, where $x \neq 0$, the middle term is $\left(\frac{2n}{2} + 1\right)^{\text{th}}$, i.e., $(n + 1)^{\text{th}}$ term [since 2n is even].

It is given by ${}^{2n}C_n x^n (\frac{1}{x})^n = {}^{2n}C_n$ which is a constant. This term is called the term independent of *x* or the constant term. **Note**: In the expansion of $(a + b)^n$, *r*th term from the end = (n - r + 2)th term from the beginning

Example 2: In the expansion of $\left(\frac{x^3}{4} - \frac{12}{x}\right)^4$, find the middle term and find the term which is independent of *x*.

Solution: As 4 is even, the middle term in the expansion of $\left(\frac{x^3}{4} - \frac{12}{x}\right)^4$ is the $\left(\frac{4}{2} + 1\right)^{\text{th}}$ term, i.e., 3rd term, which is given by

$$T_{3} = T_{2+1} = {}^{4}C_{2} \left(\frac{x^{3}}{4}\right)^{2} \left(\frac{-12}{x}\right)^{2}$$
$$= 6 \times \frac{x^{6}}{16} \times \frac{144}{x^{2}}$$
$$= 54 x^{4}$$

Now, we will find the term in the expansion which is independent of *x*. Suppose (r + 1)th term is independent of *x*.

The (r + 1)th term in the expansion of $(a + b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r} b^r$

Hence, the (r + 1)th term in the expansion of $\left(\frac{x^3}{4} - \frac{12}{x}\right)^4$ is given by

Get More Learning Materials Here :

